Skip to main content

What is 'Is this the Reason?' or ITTR?

This is my plan. Nothing is done yet to put it like a series where all the posts that belong to this series are styled in a way to SPECULATE the reason for something. I know you might be not convinced with the idea but things will become clear as you read the posts.

More or less the Idea will be here to put up a question and then trying to guess any obvious or not-so-obvious reason behind that.

Can be factual can be imaginative and definitely intuitive.

The fun will become multifold with the engagement of readers as new brains mean new ideas mean more speculations.

That it. :)

See you there!

Comments

Popular posts from this blog

CodeChef March Challenge 2021 — Consecutive Addition

“You are given two matrices A and B, each with R rows (numbered 1 through R) and C columns (numbered 1 through C). Let’s denote an element of A or B in row i and column j by A(i,j) or B(i,j) respectively….. ” You can read the whole problem here . Problem description in short Given two matrices, A and B. Task is to transform A to B using special some addition-based criteria. The criteria for transformation is as follows we are given a number K 2 ≤ K ≤ min(R, C), where R is row size and C is column size we have to take any submatrix of size Kx1 (i.e. along the column) or 1xK (i.e. along the row), in A, and to all the numbers that fall under that submatrix have, add some integer v, this can be chosen by us. This has to be done in such a way that finally A transforms to B. The actual problem is to check if this kind of transformation is possible, given A and B. Ideation…. Befor e  I begin I wanna say that it is an observation based problem, can have many solutions and my solution is no...

Fibonacci Sequence: Running Sum

  This article is in continuation of  this one . R ecap In the  previous article , I had tried to emphasize how nᵗʰ Fibonacci Number = Number of ways to climb n step staircase, where you have only two possible options to move, either by climbing 1 step or 2 steps at a time. In the same article, I have mentioned some other  p ossible representations of the Fibonacci Sequence. One of them is the number of ways to tile a N x 1 board with a 1 x 1 square and 2 x 1 domino. By writing the recurrence relation for the same, we can state that NoOfWaysToTile(n) = nᵗʰ Fibonacci Number. Recurrence for the Tiling problem Tiling Problem Relation and Fibonacci Number Reversing the above Equation In this article, I am going to discuss my approach to the Running Sum Identity of the Fibonacci Sequence using the same relation. The Running Sum of Fibonacci Sequence The Left Hand Side (L.H.S.) The L.H.S. of the equation has 2 parts  Fib(n)  and  (- 1) . Fib(n) = nᵗʰ Fibonac...

Chocolate in the Boxes

Counting problems have been irritating people for ages. They are generally long and weird with additions — substractions going on in different parts with meanings difficult to understand. Out of all the popular counting problems, one can be solved using some chocolates and boxes, which I am going to discuss in this article. The Problem For the given equation, find the number of ways such that a, b, c, d has a whole number solution, i.e. a, b, c, d ≥ 0. Most of you might know the formula for the pr o blem, here we are going to discuss a thought on how to tackle such a problem and formulate it as people find it tough to memorize and often forget. Before discussing further let’s see what the chocolate problem is. The Chocolate Problem Let’s say, we have 10 chocolates, that we need to put in 4 different boxes. It is assumed that all the chocolates are identical, and we are asked to count the number of ways to put the chocolates into the boxes. Putting no chocolates at all into the box is t...